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SINGLE-DEGREE-OF-FREEBOM-FLUTTER CALCULATIONS FOR A WING IN SUBSONIC
POTENTIAL FLOW AND COMPARISON WITH AN EXPERIMENT

By Harry L. RUNTYAN

SUMMARY

A study of single-degree-of-freedom pitching oscillations of a
wing has been presented. This study includes the effects of
Mach number and structural damping and is primarily an
extension of a recent paper by Smilg in which incompressible
flow was considered. The actual existence of single-degree-of-
freedom Autter was demonsirated by some low-speed tests of a
wing, pivoted a short distance ahead of the leading edge with a
geometric aspect ratio of 5.87. In general, good agreement
was found between experimental and caleulated results for high
values of an inertia parameter corresponding to high altitudes,
but differences exist for low values of the inertia parameter.
The ¢ffect of aspect ratio has not been considered in the calcula-
{ions and could harve an appreciable influence on the oscillation.

INTRODUCTION

The possibility of the existence of single-degree-of-freedom
oscillatory instability or flutter in incompressible flow, both
potential and separated, has been known for some time. As
early as 1929 Glauert (reference 1) noted the possible loss of
damping of a pitching wing in incompressible flow which
might lead to an oscillatory instability that may be referred
to as single-degree-of-freedom flutter. In 1937 Possio made
similar observations for supersonic flow (reference 2) and in
1946 this study was elaborated on by Garrick and Rubinow
(reference 3), who observed that, under certain conditions,
a single-degree-of-freedom oscillation is possible in incom-
pressible flow. Subsequently, Smilg (reference 4) made
caleulations showing the ranges of axis-of-rotation location
and an inertia parameter which could lead to an oscillatory
instebility in pitch or yaw for the incompressible case.
Also, Miles (reference 5) has indicated that caleulations of
stability derivatives based on steady air forces might lead to
erroneous damping derivatives, especially for high-speed
and short-tail-length aircraft. In addition, he pointed out
that the compressibility effects in nonstationary flow are not
correctly taken into account by simply introducing the
Prandtl-Glauert factor since compressibility induces addi-
tional phase lags.

Until recently whatever interest was shown in single-
degree-of-freedom flutter was largely academic because the
ranges of parameters involved did not appear practical, 7
However, with current airplanes and missiles designed for

_ high speeds and high altitudes, the subject becomes a more

practical one, for under these conditions undamped oseilla-
tions of even very small amplitude may become important.
In addition, calculations of single-degree-of-freedom flutter
may represent a useful, easily obtained limit for cases of
coupled flutter involving other degrees of freedom.

This report considers specifically the type of single-degree-
of-freedom flutter associated with the pitching of an airfoil
about various locations of the axis of rotation. It extends
the work of reference 4 to include the effects of Mach number
up to A/=0.7 and discusses the effect of structural damping
for one location of the axis of rotation. The results of an
experimental investigation which confirms the existence of
single-degree-of-freedom flutter are compared with the
theoretical values. The calculations were based on two_-.
dimensional aerodynamiec-force coefficients and involved a
single degree of freedom. The effect of aspeet ratio and
the coexistence of other degrees of freedom would modify
the results to a large extent.

SYMBOLS
a nondimensional distance from midchord to axis of
rotation, based on half-chord, positive rearward
b half-chord
é spring constant
Ca coefficient of torsional rigidity per unit length
d - damping coeflicient
F and @ functions of k for oscillating plane fow
g« structural damping coefficient
I. moment of inertia about axis of rotation per unit
_ length .
. out-of-phase (imaginary) component of moment on
airfoil about axis of rotation per unit length
k- reduced frequency (befr)
m . mass - . —
Ar Mach number

1 Supersedes NACA TN 2398, “Single-Degree-of-Freedem-Flutter Calenlations for a Wing in Subsonie Potential Flow and Comparison With an Experiment’” by Harry L. Runyan, 1951
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M, aerodynamic moment per unif length
A, M real part of aerodynamic moment for incompressible
and compressible flow, respectively

Af,, Z, aerodynamic flutter coeflicients (see reference 6)
_ (n=1,2,34)
R in-phase (real) component of moment on airfoil about
axis of rotation per unit length
? flutter velocity
displacement
o angular displacement about axis of rotation, posi-
tive in stalling direction
P fluid density
w circular frequeney at flutter
Wa natural circular frequency
ANALYSIS

INTRODUCTORY CONSIDERATIONS

Before the specific example of single-degree-of-freedom
pitehing flutter is discussed, it may be advantageous first
to review the concept of a single-degree-of-freedom vibrating
system and then to show the relation of this example to an
aerodynamic system. The linear differential equation for a
free system consisting of a mass m, a spring having a spring
constant ¢, and a viscous damper having a coefficient d is

mdg 4-cx=0 . (1)

The motion represented by this equation is damped if d
is a positive quantity, as is ordinarily the case. If d should
be negative, the motion is undamped, a condition of dynamic
instability exists, and, if d is zero, harmonic oscillations
corresponding to a borderline condition between damped
and undamped motion may exist. ,

For a system such as an aircraft wing oscillating in a
steady air stream, the same type of equation would apply as
for the mass-spring-damper system previously mentioned.
However, the cocfficients m, d, and ¢ of equation (1) will
now have added components associated with the aerody-
namics. The equation for a wing oscillating in pitch in a
steady two-dimensional air stream is

La+(1+igs) Con=Muler, &, .. ) @)

where Af, represents the complex aerodynamic moment,
which is a funection in part of amplitude «, velocity &, ac-

D b . .
celeration a, reduced frequency k=—v—w; location of axis of

rotation ¢, Mach number A, and sweep angle. Equation
(2) is complex and may be separated into two components:
one associated with the damping of the system (sometimes
called the imaginary part) and the other associated with
the flutter frequency and velocity (sometimes called the
real part).

REPORT 1089 -NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

EQUATION FOR PITCHING OSCILLATIONS, M=0

From reference 7, the values of the damping equation and
the frequency equation for two-dimensional incompressible
flow are as follows:

Damping equation

Tomi ~(3+e) ¥~ (5=e)2r+(z=) }+
si()=0 @

Frequency equatioh
T (L1, 1 Zg 1
Ro=—(g+e )+ (3-0)F ~(z+
Wq
Trpb{( >_1:|_ @

Equation (3) is equivalent to the vanishing of the damping
coeflicient d of equation (1) and thus represents a borderline
condition between damped and undamped oscillations. The
flutter frequency and velocity may then be determined from
equation (4).

Equation (3) cannot be solved explicitly for & since the
functions F and @ are transcendental functions of £, There
are scveral methods of solving this equation; a convenient
one, given in reference 8, is to assume values of 1/k and solve
for the structural damping coefficient. The type of strue-
tural damping force commonly used in flutter calculation is
in phase with the velocity but proportionate to the amplitude.
If the damping coefficient is plotted against 1/k, the value of
1/k for any given damping coeflicient may be determined.
When the value of 1/k that selisfies the imaginary or damping
part of the moment equation has been determined, the fre-
quency of oscillation and the velocity may be determined
from the real part of the moment cquation (equation (4)).
Equation (4) may be put in different form as follows:

w)2 1 .,
(L) )
Wa “ 'rpb‘_‘

1—Af, 1.

T2 (2 >+

where

M=—3 +(2 o) (GHE =5 )

(o4

If the torsional restraint w. is zero, equation (5) reduces to

1.

m':Afr (6)

so that, if the value of the inertia parameter I./rpb* exceeds



SINGLE-DEGREE-OF-FREEDOM-FLUTTER CALCULATIONS FOR A WING IN SUBSONIC POTENTIAL FLOW

the value of 1/, for the given axis-of-rotation location, the
oscillation can exist at all airspeeds above zero speed. The
frequency is then a direct function of the veloeity as defined
by the following equation:

be ' —
e - - (7

=
where 1/k is the value of the flutter-speed parameter associ-
ated with the borderline condition between damped and un-
damped oscillation for the given axis of rotation.

EQUATION FOR PITCHING OSCILLATION INCLUDING MACH NUMBER

In order to consider the effect of Mach number, the results
of reference 6 may be used. The method of computation is
the same as described in the preceding section; however, the
aerodynamic moment 3/, has been redefined to include the
effect of Mach number.

The damping (imaginary) component (see references 6
and 7) is

.Ta‘,,:ga(_g 2—pb4+k°l:m (2 ‘ a)(m FZ—3 zz)]

5 My =0 (8)

and the frequency (real) equation is

()=

g Teb
1A

L (3+0) (3425 2) [ 00

, 4
M=% [M:,_;

The aerodynamic coefficients M, and Z, are funetions only
of reduced frequency k and Mach number (see reference 6).

where

ANALYTICAL RESULTS

The purpose of this section is to show the results of some
caleulations made to determine the effect of some of the
independent variables on the flutter speed and flutter
frequency.

In figure 1, the flutter-speed parameter s/bw. is plotted
against the inertia parameter f.fmpb* for three Mach num-
bers, 1/=0, M=0.5, and A/=0.7. The region to the right
and above a given curve is the unstable region, whereas the
region to the left and below is the stable region. Increasing
altitude is equivalent to increasing values of the inertia
parameter. (Note the large change in scale of figs.1 (a) to 1 (f}.)

As an illustration of the meaning of the curves of figure 1,
the Af=0 case of figure 1 (a) {a=—1.0) is discussed. If the

value of the inertia parameter is below 571 (the asymptote),
the configuration will be stable. As the altitude is increased,
the inertia parameter will increase and, if it is equal to 571,

the velocity at which an unstable oscillation eould oceur .
A slight inerease in the inertia parameter

wotuld be infinite.
would now have a very great effect in reducing the critical
veloeity.
the curve is asymptotic to a value of #/bw. which is equal to
the reduced velocity ofbw (that is, 1/k), which for this case
is 24.7.
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FIGURE 1.—Plot of r/bwe against Jofrpbt for single-degree-of-freedom pitching oscillation for
various axis-of-rotation positions « for several Mach numbers,
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For very large values of the inertia parameter,
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The effect of Mach number is now examined. First, and Another effect is that, for a given speed v, the frequency
most important, a large reduction in the stable region is to | of oscillation would increase for an inerease in Mach number.
be poted. For example, in figure 1 (a), the upper limit of | For instance, in figure 1 (a), the frequency of oseillation
the stable region for A/=0 for the inertia parameter Jo/mpb* | would be increased by a factor of 2 with an increase in Mach
is 571 and this limit is reduced to 137 at M =0.7. number from 0 to 0.7.
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In figure 2, the frequency ratio (w/w.)® is plotted against
the inertia parameter I./wpb*. This curve has the same
vertical asymptote for the inertia parameter as for the cor-
responding reduced-velocity curve (fig. 1) and the unstable
region is again to the right and above the curve. The inertia
parameter increases as the altitude increases. At low values
of the inertia parameter the configuration is stable. The
frequency of oscillation is infinite at the asymptotic value
of the inertia parameter and decreases rapidly as the inertia
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FIGURE 2.—Plot of (w/we)? against Iof=pbtfor single-degree-of-freedom pitching oseillation for
varfous axis-of-rotation pesitions e for several Mach nmmbers.
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parameter is increased further. For very large values of
the inertia parameter, the curve is asymptotic to the natural
frequeney w. of the system. In figure 3, the minimum
asymptotic value of the inertia parameter [./mpb* at which

the oseillation eould begin is plotted against Mach number
for various positions of the axis of rotation. An important
effect to be noted is that, as the distance of the axis of rota-
tion from the lifting surface is increased, the effect of Mach |
number becomes increasingly greater. 7
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of ¢ in this report), an oscillation involving a yawing motion
of the vertical tail or a pitching motion of the horizontal tail
may be an instability of the type considered in this report.
As a point of interest, values of the inertia parameter for
usual aireraft configurations when the vertical tail is consid-
ered as the lifting surface vary from 2,000 to 20,000 at sea
level and would be increased by a factor of 10 for 60,000 feet.
Since the inertia of an aireraft is usually larger about the
vertical axis than about the horizontal axis, it appears that
thiis type of analysis might be more applicable to the yawing
motion. It should be noted that the caleulations are based
on two-dimensional aerodynamic coefficients and the effect
of aspect ratio, especially if a tail surface is considered, can
be appreciable.

In figure 5, the effect of structural damping is shown for
an axis-of-rotation location ¢ = —1.24 and Af = 0. The
Hutter-speed parameter o/bw. is plotied against the inertis
parameter for several values of structural damping coeffi-
clent g,. It is apparent that a small amount of structural
damping has a very great effect on the flutter speed, espe-
cially a!t the low density or high-altitude portion of the figure.
: ﬁ—_—lp%-“=18,000, a value of g, = 0.01
raises the flutter velocity by a factor of 3 above the zero-
damping curve, and a value of g, = 0.02 raises the flutter
velocity by a factor of 5. However, structural damping did
not influence the minimum (asymptotic} value of the inertia
parameter at which the oscillation could begin.

For instance, at & value of

APPARATUS AND TEST PROCEDURE

The tests were conducted in the Langley 4.5-foot flutter
research tunnel at low speeds (0.06<{A{< 0.3). This tunnel
can be operated at any pressure from atmospheric to 1/2
inch of mercury to provide a large range of the inertia pa-
rameter [, /xpbt

A diagram of the model and test section is shown in figure
t with all the pertinent dimensions and parameters. The
geometric aspect ratio was 5.87. Since the wing tips were
mounted close to the tunnel walls, an effective aspect ratio
somewhat larger than the geometric aspect ratio was prob-
ably obtained. The wing was pivoted on ball bearings, and
coil springs were fastened to the arms ta provide structural
restraint.

A small lever was inserted through the tunnel wall and
sealed with rubber tubing so that the wing could be disturbed
while the test was being conducted. 1t was found while
conducting the tesis that the oscillation eould be started at
a slightly lower fluid velocity if the wing were disturbed by
means of the lever than if the wing were not disturbed.
After the completion of the tests, the damping characteristics
of the bearings were Investigated, and it was found that the
damping g. was considerably greater for low-amplitude
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Fiaurk 5.—Cuarves of experimental and theoretical single-degree-uf-freedom pitching oseilla-
tion for various values of struetural damping. e=-1.24.
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FI6URE 8.—Diagram of model and maodel installation. Inertia of system about axis of rota-
tion Ja=0.0948 foot-pound-seconds square per foot; natural! frequency of s¥stem we=22.99,

oscillations than for the high-amplitude oscillations. This
variation of damping with amplitude can account for the fact
previously mentioned that the model would start oscillating
at slightly lower airspeed if the model were disturbed with
the lever than if it were left to the inherent air turbulence
of the tunnel.

EXPERIMENTAL RESULTS

The experimentsl results are plotted in figure 5 where the

ordinate is the flutter-speed coefficient v/bw., and the abscissa
is the inertia parameter Jf=pb*t. Theoretical curves for four

different values of damping are given, and the experimental

curve is shown.
The values of the experimental curve at the high-altitude
(low-density) range are in close agreement with the theoretical
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curve for g,==0.008. From an examination of the records,
it appears that a damping coefficient of 0.015>¢,>0.008
was obtained; 'a more exact determination was not possible
because of the dependence of the damping on the amplitude
of oseillation,

The important facts to be noted are, first, that a single-
degree-of-freedom oscillation was obtained and, second, that
the trend in the lower-density region was of the same order
of magnitude as that of the theoretical eurves with damping.
The reason for the discrepancy at the higher-density part of
the plot is not known; a similar phenomenon has been found
in other cases for the more conventional type of flutter in-
volving more than one degree of freedom.

From observations of the tests, it appears that the single-
degree-of-freedom oscillation discussed in this report is a mild
type of flutter, as contrasted to the more destructive type
of flutter usually associated with coupled flutter. This type
of instability might become of importance in airplane
stability considerations, and the possible application to
phenomena such as snaking should not be overlooked.
It must be realized that three-dimensional effects may
exercise some modification of these results.

CONCLUSIONS

A study of single-degree-of-freedom pitching oscillations
of a wing has been presented. This study includes the effects
of Maech number and structural damping and is primarily
an extension of a recent paper by Smilg, in which incom-
pressible flow was considered. The actual existence of
single-degree-of-freedom flutter was demonstrated by some
Jow-speed tests of a wing, pivoted a short distance ahead of
the leading edge with a geometric aspect ratio of 5.87.

The following conclusions may be drawn:

1. The existence of single-degree-of-freedom pltchmg
oscillations has been experimentally demonstrated..

2. The experimental data are in close agreement with the
theoretical values for high values of the inertia parameter.
At low wvalues of the inertia parameter, the experimental
data are in poor agreement with the theary.

3. Structural damping g. has an appreciable effect on this
instability and increases the flutter speed.

4. The analytical results show that an inerease of Mach
number reduces the range of values of an inertia parameter
for which a configuration would be stable. The results are
based on two-dimensional coefficients and it is possible that
aspect ratio could have a great effect.

5. The flutier seems to be of a mild variety, in that it
would not neccessarily cause structural failure, bhut the
possible application to phenomena such as snaking for air-
craft having a short tail length should not be overlooked.

LANGLEY AERONAUTICAL LLABORATORY,
Narionar Apvisory COMMITTEE FOR AERONAUTICS,
Lanarey Fieun, Va., April 10, 1951.
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